Search results
Results from the WOW.Com Content Network
Given two topological spaces X and Y, a homotopy equivalence between X and Y is a pair of continuous maps f : X → Y and g : Y → X, such that g ∘ f is homotopic to the identity map id X and f ∘ g is homotopic to id Y. If such a pair exists, then X and Y are said to be homotopy equivalent, or of the same homotopy type.
If the images to be rectified are taken from camera pairs without geometric distortion, this calculation can easily be made with a linear transformation.X & Y rotation puts the images on the same plane, scaling makes the image frames be the same size and Z rotation & skew adjustments make the image pixel rows directly line up [citation needed].
A continuous map f between topological spaces X and Y induces a chain map between the singular chain complexes of X and Y, and hence induces a map f * between the singular homology of X and Y as well. When X and Y are both equal to the n-sphere, the map induced on homology defines the degree of the map f.
A continuous map is a function between spaces that preserves continuity. A homotopy is a continuous path between continuous maps; two maps connected by a homotopy are said to be homotopic. [6] The idea common to all these concepts is to discard variations that do not affect outcomes of interest.
In genetics, a centimorgan (abbreviated cM) or map unit (m.u.) is a unit for measuring genetic linkage. It is defined as the distance between chromosome positions (also termed loci or markers) for which the expected average number of intervening chromosomal crossovers in a single generation is 0.01. It is often used to infer distance along a ...
All maps in this long exact sequence are induced by the maps between the chain complexes, except for the maps () The latter are called connecting homomorphisms and are provided by the zig-zag lemma. This lemma can be applied to homology in numerous ways that aid in calculating homology groups, such as the theories of relative homology and Mayer ...
add a new (,) pair to the collection, mapping the key to its new value. Any existing mapping is overwritten. The arguments to this operation are the key and the value. Remove or delete remove a (,) pair from the collection, unmapping a given key from its value. The argument to this operation is the key.
A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]