enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    For a rectifiable curve these approximations don't get arbitrarily large (so the curve has a finite length). If a curve can be parameterized as an injective and continuously differentiable function (i.e., the derivative is a continuous function) f : [ a , b ] → R n {\displaystyle f\colon [a,b]\to \mathbb {R} ^{n}} , then the curve is ...

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    has a length equal to one and is thus a unit tangent vector. If the curve is twice differentiable, that is, if the second derivatives of x and y exist, then the derivative of T(s) exists. This vector is normal to the curve, its length is the curvature κ(s), and it is oriented toward the center of curvature. That is,

  4. Intrinsic equation - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_equation

    Therefore an intrinsic equation defines the shape of the curve without specifying its position relative to an arbitrarily defined coordinate system. The intrinsic quantities used most often are arc length s {\displaystyle s} , tangential angle θ {\displaystyle \theta } , curvature κ {\displaystyle \kappa } or radius of curvature , and, for 3 ...

  5. Crofton formula - Wikipedia

    en.wikipedia.org/wiki/Crofton_formula

    Since a convex curve intersects almost every line either twice or not at all, the unoriented Crofton formula for convex curves can be stated without numerical factors: the measure of the set of straight lines which intersect a convex curve is equal to its length. The same formula (with the same multiplicative constants) apply for hyperbolic ...

  6. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    A space curve is a curve for which is at least three-dimensional; a skew curve is a space curve which lies in no plane. These definitions of plane, space and skew curves apply also to real algebraic curves , although the above definition of a curve does not apply (a real algebraic curve may be disconnected ).

  7. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Other lengths may be used—such as 100 metres (330 ft) where SI is favoured or a shorter length for sharper curves. Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795 , where D is degree and r is radius.

  8. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The two squared formulas inside the square root give the areas of squares on the horizontal and vertical sides, and the outer square root converts the area of the square on the hypotenuse into the length of the hypotenuse. [3] It is also possible to compute the distance for points given by polar coordinates.

  9. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]