Search results
Results from the WOW.Com Content Network
Lithium boric acid or sodium boric acid are usually preferable to lithium acetate or TAE when analyzing smaller fragments of DNA (less than 500 bp) due to the higher resolution of borate-based buffers in this size range as compared to acetate buffers. Lithium acetate is also used to permeabilize the cell wall of yeast for use in DNA transformation.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The lithium bromide forms a complex with the methyllithium. Most commercially available methyllithium consists of this complex. "Low-halide" methyllithium is prepared from methyl chloride. [1] Lithium chloride precipitates from the diethyl ether since it does not form a strong complex with methyllithium. The filtrate consists of fairly pure ...
Acetic acid, a weak acid, donates a proton (hydrogen ion, highlighted in green) to water in an equilibrium reaction to give the acetate ion and the hydronium ion. Red: oxygen, black: carbon, white: hydrogen.
A chaotropic agent is a molecule in water solution that can disrupt the hydrogen bonding network between water molecules (i.e. exerts chaotropic activity).This has an effect on the stability of the native state of other molecules in the solution, mainly macromolecules (proteins, nucleic acids) by weakening the hydrophobic effect.
Hence by following the hydrogen ion concentration during a titration of a mixture of M and HL with base, and knowing the acid dissociation constant of HL, the stability constant for the formation of ML could be determined. Bjerrum went on to determine the stability constants for systems in which many complexes may be formed.
Barium acetate is generally produced by the reaction of acetic acid with barium carbonate: [2] BaCO 3 + 2 CH 3 COOH → (CH 3 COO) 2 Ba + CO 2 + H 2 O. The reaction is performed in solution and the barium acetate crystalizes out at temperatures above 41 °C. Between 25 and 40 °C, the monohydrate version crystalizes. Alternatively, barium ...
An example of a base being neutralized by an acid is as follows. Ba(OH) 2 + 2 H + → Ba 2+ + 2 H 2 O. The same equation relating the concentrations of acid and base applies. The concept of neutralization is not limited to reactions in solution. For example, the reaction of limestone with acid such as sulfuric acid is also a neutralization ...