enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    the equation indicates that the decay constant λ has units of t −1, and can thus also be represented as 1/ τ, where τ is a characteristic time of the process called the time constant. In a radioactive decay process, this time constant is also the mean lifetime for decaying atoms.

  3. Tritium - Wikipedia

    en.wikipedia.org/wiki/Tritium

    Tritium (from Ancient Greek τρίτος (trítos) ' third ') or hydrogen-3 (symbol T or 3 H) is a rare and radioactive isotope of hydrogen with a half-life of ~12.3 years. The tritium nucleus (t, sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of the common isotope hydrogen-1 (protium) contains one proton and no neutrons, and that of non-radioactive ...

  4. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Aluminium can capture a neutron and generate radioactive sodium-24, which has a half life of 15 hours [9] [10] and a beta decay energy of 5.514 MeV. [ 11 ] The activation of a number of test target elements such as sulfur , copper, tantalum , and gold have been used to determine the yield of both pure fission [ 12 ] [ 13 ] and thermonuclear ...

  5. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    The decay energy is the energy change of a nucleus having undergone a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type (called the parent nuclide) transforming to an atom of a different ...

  6. Decay chain - Wikipedia

    en.wikipedia.org/wiki/Decay_chain

    The four most common modes of radioactive decay are: alpha decay, beta decay, inverse beta decay (considered as both positron emission and electron capture), and isomeric transition. Of these decay processes, only alpha decay (fission of a helium-4 nucleus) changes the atomic mass number ( A ) of the nucleus, and always decreases it by four.

  7. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    Rutherford and Soddy were observing natural transmutation as a part of radioactive decay of the alpha decay type. The first artificial transmutation was accomplished in 1925 by Patrick Blackett, a research fellow working under Rutherford, with the transmutation of nitrogen into oxygen, using alpha particles directed at nitrogen 14 N + α → 17 ...

  8. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  9. Isotopes of oxygen - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_oxygen

    ) decay by neutron emission to 24 O, whose half-life is 77.4(4.5) ms. This isotope, along with 28 Ne, have been used in the model of reactions in crust of neutron stars. [17] The most common decay mode for isotopes lighter than the stable isotopes is β + decay to nitrogen, and the most common mode after is β − decay to fluorine.