Search results
Results from the WOW.Com Content Network
Algorithmic game theory (AGT) is an area in the intersection of game theory and computer science, with the objective of understanding and design of algorithms in strategic environments. Typically, in Algorithmic Game Theory problems, the input to a given algorithm is distributed among many players who have a personal interest in the output.
Divide and conquer divides the problem into multiple subproblems and so the conquer stage is more complex than decrease and conquer algorithms. [citation needed] An example of a decrease and conquer algorithm is the binary search algorithm. Search and enumeration Many problems (such as playing chess) can be modelled as problems on graphs.
Game programming, a subset of game development, is the software development of video games.Game programming requires substantial skill in software engineering and computer programming in a given language, as well as specialization in one or more of the following areas: simulation, computer graphics, artificial intelligence, physics, audio programming, and input.
Three significant characteristics of distributed systems are: concurrency of components, lack of a global clock, and independent failure of components. [15] Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications, and blockchain networks like Bitcoin.
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
General game playing (GGP) is the design of artificial intelligence programs to be able to play more than one game successfully. [1] [2] [3] For many games like chess, computers are programmed to play these games using a specially designed algorithm, which cannot be transferred to another context.
For examples of this specification-method applied to the addition algorithm "m+n" see Algorithm examples. An example in Boolos-Burgess-Jeffrey (2002) (pp. 31–32) demonstrates the precision required in a complete specification of an algorithm, in this case to add two numbers: m+n. It is similar to the Stone requirements above.
Irrespective of the problem category, the process of solving a problem can be divided into two broad steps: constructing an efficient algorithm, and implementing the algorithm in a suitable programming language (the set of programming languages allowed varies from contest to contest). These are the two most commonly tested skills in programming ...