Search results
Results from the WOW.Com Content Network
Algorithm design is a method or mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories, such as divide-and-conquer or dynamic programming within operation research. Techniques for designing and implementing algorithm designs are also called algorithm design patterns, [38 ...
There are several broadly recognized algorithmic techniques that offer a proven method or process for designing and constructing algorithms. Different techniques may be used depending on the objective, which may include searching, sorting, mathematical optimization, constraint satisfaction, categorization, analysis, and prediction.
Algorithm engineering focuses on the design, analysis, implementation, optimization, profiling and experimental evaluation of computer algorithms, bridging the gap between algorithmics theory and practical applications of algorithms in software engineering. [1]
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations N versus input size n for each function. In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage
In computer science, divide and conquer is an algorithm design paradigm.A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly.
From a dynamic programming point of view, Dijkstra's algorithm for the shortest path problem is a successive approximation scheme that solves the dynamic programming functional equation for the shortest path problem by the Reaching method. [8] [9] [10] In fact, Dijkstra's explanation of the logic behind the algorithm, [11] namely Problem 2.
It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical optimization. A branch-and-bound algorithm consists of a systematic enumeration of candidate solutions by means of state space search: the set of candidate solutions is thought of as forming a rooted tree with the