Search results
Results from the WOW.Com Content Network
Find remainder of 1036125837 divided by 7 1×3 + 0 = 3 3×3 + 3 = 12 remainder 5 5×3 + 6 = 21 remainder 0 0×3 + 1 = 1 1×3 + 2 = 5 5×3 + 5 = 20 remainder 6 6×3 + 8 = 26 remainder 5 5×3 + 3 = 18 remainder 4 4×3 + 7 = 19 remainder 5 Answer is 5 Finding remainder of a number when divided by 7
Instead, the division is reduced to small steps. Starting from the left, enough digits are selected to form a number (called the partial dividend) that is at least 4×1 but smaller than 4×10 (4 being the divisor in this problem). Here, the partial dividend is 9. The first number to be divided by the divisor (4) is the partial dividend (9).
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
In terms of partition, 20 / 5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20 apples divide into five groups of four apples, meaning that "twenty divided by five is equal to four". This is denoted as 20 / 5 = 4, or 20 / 5 = 4. [2] In the example, 20 is the dividend, 5 is the divisor, and 4 is ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Note: Most subscribers have some, but not all, of the puzzles that correspond to the following set of solutions for their local newspaper. CROSSWORDS
127|4 −124|31,75 30 −28 20 −20 0 In Cyprus, as well as in France, a long vertical bar separates the dividend and subsequent subtractions from the quotient and divisor, as in the example below of 6359 divided by 17, which is 374 with a remainder of 1. 6359|17 −51 |374 125 | −119 | 69| −68| 1|
For each of them, compute the remainder by 4 (the second largest modulus) until getting a number congruent to 3 modulo 4. Then one can proceed by adding 20 = 5 × 4 at each step, and computing only the remainders by 3. This gives 4 mod 4 → 0. Continue 4 + 5 = 9 mod 4 →1. Continue 9 + 5 = 14 mod 4 → 2. Continue 14 + 5 = 19 mod 4 → 3.