Search results
Results from the WOW.Com Content Network
Porosimetry is an analytical technique used to determine various quantifiable aspects of a material's porous structure, such as pore diameter, total pore volume, surface area, and bulk and absolute densities. The technique involves the intrusion of a non-wetting liquid (often mercury) at high pressure into a material through the use of a ...
Powder wettability measurement with the Washburn method. In its most general form the Lucas Washburn equation describes the penetration length of a liquid into a capillary pore or tube with time as = (), where is a simplified diffusion coefficient. [4]
In capillary flow porometry, in opposition to mercury intrusion porosimetry, the wetting liquid enters spontaneously the pores of the sample ensuring a total wetting of the material, and therefore the contact angle of the wetting liquid with the sample is 0 and the previous formula can be simplified as: P= 4*γ/D.
The equation first formulated a means to calculate cumulative surface areas of porous solids based on data taken in mercury porosimetry testing. Rootare and Spencer later devised a computer program to carry out automated calculations, "A Computer Program for Pore Volume and Pore Area Distribution," Rootare & Spencer, Perspectives in Powder ...
Micro CT of porous medium: Pores of the porous medium shown as purple color and impermeable porous matrix shown as green-yellow color. Pore structure is a common term employed to characterize the porosity, pore size, pore size distribution, and pore morphology (such as pore shape, surface roughness, and tortuosity of pore channels) of a porous medium.
This technique uses differential scanning calorimetry (DSC) to detect the phase changes. The signal detection relies on transient heat flows of latent heat of fusion at the phase changes, and thus the measurement can not be made arbitrarily slowly, limiting the resolution in pore size.
Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%.
A detailed analysis of the shape of these isotherms is done using the Kelvin equation. This enables the pore size distribution to be determined. [2] While this is a relatively simple method of analyzing the isotherms, a more in depth analysis of the isotherms is done using the BET method. Another method of determining the pore size distribution ...