Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
[1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking. [2] It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute. [3]
In comparison, variables with unordered scales are nominal variables. [1] Visual difference between nominal and ordinal data (w/examples), the two scales of categorical data [2] A nominal variable, or nominal group, is a group of objects or ideas collectively grouped by a particular qualitative characteristic. [3]
The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one transformation. Ordinal measurements have imprecise differences between consecutive values, but have a meaningful order to those values, and permit any ...
Pairwise comparison scale – a respondent is presented with two items at a time and asked to select one (example : does one prefer Pepsi or Coke?). This is an ordinal level technique when a measurement model is not applied. Krus and Kennedy (1977) elaborated the paired comparison scaling within their domain-referenced model.
However, this can only be the case if the intervals between the scale points correspond to empirical observations in a metric sense. Reips and Funke (2008) [21] show that this criterion is much better met by a visual analogue scale. In fact, there may also appear phenomena which even question the ordinal scale level in Likert scales. [22]
In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.
Indexes and scales should provide an ordinal ranking of cases on a given variable, though scales are usually more efficient at this. [3] [4] While indexes are based on a simple aggregation of indicators of a variable, scales are more advanced, and their calculations may be more complex, using for example scaling procedures such as semantic ...