Search results
Results from the WOW.Com Content Network
The superior planets, orbiting outside the Earth's orbit, do not exhibit a full range of phases since their maximum phase angles are smaller than 90°. Mars often appears significantly gibbous, it has a maximum phase angle of 45°. Jupiter has a maximum phase angle of 11.1° and Saturn of 6°, [1] so their phases are almost always full.
"Inferior planet" refers to Mercury and Venus, which are closer to the Sun than Earth is. "Superior planet" refers to Mars, Jupiter, Saturn, Uranus, and Neptune (the latter two added later), which are further from the Sun than Earth is. The terms are sometimes used more generally; for example, Earth is an inferior planet relative to Mars.
At phase angles exceeding 90° (crescent phase) the brightness falls off especially sharply. The shape of the phase curve indicates a mean slope on the surface of Mercury of about 16°, [1] which is slightly smoother than that of the Moon. Approaching phase angle 0° (fully illuminated phase) the curve rises to a sharp peak.
For some objects, such as the Moon (see lunar phases), Venus and Mercury the phase angle (as seen from the Earth) covers the full 0–180° range. The superior planets cover shorter ranges. For example, for Mars the maximum phase angle is about 45°. For Jupiter, the maximum is 11.1° and for Saturn 6°. [1]
Each night the planet appeared to lag a little behind the stars, in what is called prograde motion. Near opposition, the planet would appear to reverse and move through the night sky faster than the stars for a time in retrograde motion before reversing again and resuming prograde. Epicyclic theory, in part, sought to explain this behavior.
Diagram showing the eastern and western quadratures of a superior planet like Mars. In spherical astronomy, quadrature is the configuration of a celestial object in which its elongation is a right angle (90 degrees), i.e., the direction of the object as viewed from Earth is perpendicular to the position of the Sun relative to Earth.
Parts-per-million chart of the relative mass distribution of the Solar System, each cubelet denoting 2 × 10 24 kg. This article includes a list of the most massive known objects of the Solar System and partial lists of smaller objects by observed mean radius.
[1] A transit of Mercury across the Sun takes place when the planet Mercury passes directly between the Sun and a superior planet. During a transit, Mercury appears as a tiny black dot moving across the Sun as the planet obscures a small portion of the solar disk. Because of orbital alignments, transits viewed from Earth occur in May or ...