Search results
Results from the WOW.Com Content Network
With this value for R the meridian length of 1 degree of latitude on the sphere is 111.2 km (69.1 statute miles) (60.0 nautical miles). The length of one minute of latitude is 1.853 km (1.151 statute miles) (1.00 nautical miles), while the length of 1 second of latitude is 30.8 m or 101 feet (see nautical mile).
A nautical mile is a unit of length used in air, marine, and space navigation, and for the definition of territorial waters. [2] [3] [4] Historically, it was defined as the meridian arc length corresponding to one minute ( 1 / 60 of a degree) of latitude at the equator, so that Earth's polar circumference is very near to 21,600 nautical miles (that is 60 minutes × 360 degrees).
A geographical mile is defined to be the length of one minute of arc along the equator (one equatorial minute of longitude) therefore a degree of longitude along the equator is exactly 60 geographical miles or 111.3 kilometers, as there are 60 minutes in a degree. The length of 1 minute of longitude along the equator is 1 geographical mile or 1 ...
In geography and geodesy, a meridian is the locus connecting points of equal longitude, which is the angle (in degrees or other units) east or west of a given prime meridian (currently, the IERS Reference Meridian). [1] In other words, it is a coordinate line for longitudes, a line of longitude.
On the GRS 80 or WGS 84 spheroid at sea level at the Equator, one latitudinal second measures 30.715 m, one latitudinal minute is 1843 m and one latitudinal degree is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases.
He reasoned that the lines of latitude could be used as the basis for a unit of measurement for distance and proposed the nautical mile as one minute or one-sixtieth ( 1 / 60 ) of one degree of latitude. As one degree is 1 / 360 of a circle, one minute of arc is 1 / 21600 of a circle – such that the polar circumference ...
The slant distance s (chord length) between two points can be reduced to the arc length on the ellipsoid surface S as: [21] = (+) / / where R is evaluated from Earth's azimuthal radius of curvature and h are ellipsoidal heights are each point. The first term on the right-hand side of the equation accounts for the mean elevation and the second ...
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...