Search results
Results from the WOW.Com Content Network
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
العربية; বাংলা; Čeština; Dansk; الدارجة; Deutsch; Eesti; Ελληνικά; Español; Esperanto; فارسی; Français; 한국어; Հայերեն
The traditional ld (Unix linker) requires that its library inputs be sorted in topological order, since it processes files in a single pass. This applies both to static libraries ( *.a ) and dynamic libraries ( *.so ), and in the case of static libraries preferably for the individual object files contained within.
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]
Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time , matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm .
Weak orders have also been used in computer science, in partition refinement based algorithms for lexicographic breadth-first search and lexicographic topological ordering. In these algorithms, a weak ordering on the vertices of a graph (represented as a family of sets that partition the vertices, together with a doubly linked list providing a ...
A kind of opposite of a sorting algorithm is a shuffling algorithm. These are fundamentally different because they require a source of random numbers. Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers.
Rubinstein and Thompson's 3-sphere recognition algorithm. This is an algorithm that takes as input a triangulated 3-manifold and determines whether or not the manifold is homeomorphic to the 3-sphere. It has exponential run-time in the number of tetrahedral simplexes in the initial 3-manifold, and also an exponential memory profile.