Search results
Results from the WOW.Com Content Network
In general, the relaxation of smooth muscle is by cell-signaling pathways that increase the myosin phosphatase activity, decrease the intracellular calcium levels, hyperpolarize the smooth muscle, and/or regulate actin and myosin muscle can be mediated by the endothelium-derived relaxing factor-nitric oxide, endothelial derived hyperpolarizing ...
Like other β adrenergic agonists, they cause smooth muscle relaxation. β 2 adrenergic agonists' effects on smooth muscle cause dilation of bronchial passages, vasodilation in muscle and liver, relaxation of uterine muscle, and release of insulin. They are primarily used to treat asthma and other pulmonary disorders.
The beta-2 adrenergic receptor (β 2 adrenoreceptor), also known as ADRB2, is a cell membrane-spanning beta-adrenergic receptor that binds epinephrine (adrenaline), a hormone and neurotransmitter whose signaling, via adenylate cyclase stimulation through trimeric G s proteins, increases cAMP, and, via downstream L-type calcium channel interaction, mediates physiologic responses such as smooth ...
Smooth muscle tissue is mostly made of actin and myosin, [3] two proteins that interact together to produce muscle contraction and relaxation. Myosin II, also known as conventional myosin, has two heavy chains that consist of the head and tail domains and four light chains (two per head) that bind to the heavy chains in the “neck” region.
Activation of β 2 receptors induces smooth muscle relaxation in the lungs, gastrointestinal tract, uterus, and various blood vessels. Increased heart rate and heart muscle contraction are associated with the β1 receptors; however, β 2 cause vasodilation in the myocardium. [citation needed] β3 receptors are mainly located in adipose tissue. [5]
There are two general pathways that explain EDH Diffusible factors are endothelium-derived substances that are able to pass through internal elastic lamina (IEL), reach underlying vascular smooth muscle cells at a concentration sufficient to activate ion channels, and initiate smooth muscle hyperpolarization and relaxation.
Relaxation of the smooth muscle layer allows the blood vessel to dilate, as it is held in a semi-constricted state by sympathetic nervous system activity. [2] Vasodilation is the opposite of vasoconstriction , which is the narrowing of blood vessels.
Specifically, in smooth muscle tissue, PKG promotes the opening of calcium-activated potassium channels, leading to cell hyperpolarization and relaxation, and blocks agonist activity of phospholipase C, reducing liberation of stored calcium ions by inositol triphosphate.