enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    The input power provided by the cyclist is equal to the product of angular speed (i.e. the number of pedal revolutions per minute times 2π) and the torque at the spindle of the bicycle's crankset. The bicycle's drivetrain transmits the input power to the road wheel , which in turn conveys the received power to the road as the output power of ...

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    When the velocity changes sign (at the maximum and minimum displacements), the magnitude of the force on the mass changes by twice the magnitude of the frictional force, because the spring force is continuous and the frictional force reverses direction with velocity. The jump in acceleration equals the force on the mass divided by the mass.

  5. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

  6. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  7. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2 ) in SI units and pound-foot-second squared (lbf·ft·s 2 ) in imperial or US units.

  8. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    For convenience, consider contact with the spring occurs at t = 0, then the integral of the product of the distance x and the x-velocity, xv x dt, over time t is ⁠ 1 / 2 ⁠ x 2. The work is the product of the distance times the spring force, which is also dependent on distance; hence the x 2 result.

  9. Angular acceleration - Wikipedia

    en.wikipedia.org/wiki/Angular_acceleration

    Angular acceleration has physical dimensions of angle per time squared, measured in SI units of radians per second squared (rad ⋅ s −2). In two dimensions, angular acceleration is a pseudoscalar whose sign is taken to be positive if the angular speed increases counterclockwise or decreases clockwise, and is taken to be negative if the ...