enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [ 1 ]

  3. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  4. Inverse probability - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability

    Given the data, one must estimate the true position (probably by averaging). This problem would now be considered one of inferential statistics. The terms "direct probability" and "inverse probability" were in use until the middle part of the 20th century, when the terms "likelihood function" and "posterior distribution" became prevalent.

  5. Horvitz–Thompson estimator - Wikipedia

    en.wikipedia.org/wiki/Horvitz–Thompson_estimator

    In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the target population.

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.

  7. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Adjusting for unequal probability selection through "individual case weights" (e.g. inverse probability weighting), yields various types of estimators for quantities of interest. Estimators such as Horvitz–Thompson estimator yield unbiased estimators (if the selection probabilities are indeed known, or approximately known), for total and the ...

  8. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample ( 10 8 + 4 , 10 8 + 7 , 10 8 + 13 , 10 8 + 16 ), which gives rise to the same estimated variance as the first sample.

  9. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    L-moments are statistical quantities that are derived from probability weighted moments [12] (PWM) which were defined earlier (1979). [8] PWM are used to efficiently estimate the parameters of distributions expressable in inverse form such as the Gumbel , [ 9 ] the Tukey lambda , and the Wakeby distributions.