enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    The orthogonal complement is always closed in the metric topology. In finite-dimensional spaces, that is merely an instance of the fact that all subspaces of a vector space are closed. In infinite-dimensional Hilbert spaces, some subspaces are not closed, but all orthogonal

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    It follows that x is in the kernel of A, if and only if x is orthogonal (or perpendicular) to each of the row vectors of A (since orthogonality is defined as having a dot product of 0). The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Thus A T x = 0 if and only if x is orthogonal (perpendicular) to each of the column vectors of A. It follows that the left null space (the null space of A T) is the orthogonal complement to the column space of A. For a matrix A, the column space, row space, null space, and left null space are sometimes referred to as the four fundamental subspaces.

  5. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    If V is a closed subspace of H, then V ⊥ is called the orthogonal complement of V. In fact, every x ∈ H can then be written uniquely as x = v + w, with v ∈ V and w ∈ V ⊥. Therefore, H is the internal Hilbert direct sum of V and V ⊥. The linear operator P V : H → H that maps x to v is called the orthogonal projection onto V.

  6. Complemented subspace - Wikipedia

    en.wikipedia.org/wiki/Complemented_subspace

    The choice of can matter quite strongly: every complemented vector subspace has algebraic complements that do not complement topologically. Because a linear map between two normed (or Banach ) spaces is bounded if and only if it is continuous , the definition in the categories of normed (resp. Banach ) spaces is the same as in topological ...

  7. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  8. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    The orthogonal complement of a subspace is the space of all vectors that are orthogonal to every vector in the subspace. In a three-dimensional Euclidean vector space, the orthogonal complement of a line through the origin is the plane through the origin perpendicular to it, and vice versa. [5]

  9. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    ⁠ ⁠ is the orthogonal projector onto the range of ⁠ ⁠ (which equals the orthogonal complement of the kernel of ⁠ ⁠). ⁠ Q {\displaystyle Q} ⁠ is the orthogonal projector onto the range of ⁠ A ∗ {\displaystyle A^{*}} ⁠ (which equals the orthogonal complement of the kernel of ⁠ A {\displaystyle A} ⁠ ).