enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    The origin and all events on the light cone are self-orthogonal. When a time event and a space event evaluate to zero under the bilinear form, then they are hyperbolic-orthogonal. This terminology stems from the use of conjugate hyperbolas in the pseudo-Euclidean plane: conjugate diameters of these hyperbolas are hyperbolic-orthogonal.

  3. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  4. In-phase and quadrature components - Wikipedia

    en.wikipedia.org/wiki/In-phase_and_quadrature...

    And in functional analysis, when x is a linear function of some variable, such as time, these components are sinusoids, and they are orthogonal functions. A phase-shift of x → x + π /2 changes the identity to: cos(x + φ) = cos(x) cos(φ) + cos(x + π /2) sin(φ), in which case cos(x) cos(φ) is the in-phase component.

  5. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  6. Scalar projection - Wikipedia

    en.wikipedia.org/wiki/Scalar_projection

    The term scalar component refers sometimes to scalar projection, ... The scalar projection is a scalar, equal to the length of the orthogonal projection of ...

  7. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Covariant and contravariant components of a vector when the basis is not orthogonal. In a finite-dimensional vector space V over a field K with a symmetric bilinear form g : V × V → K (which may be referred to as the metric tensor ), there is little distinction between covariant and contravariant vectors, because the bilinear form allows ...

  8. Orthographic projection - Wikipedia

    en.wikipedia.org/wiki/Orthographic_projection

    Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.

  9. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.