enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fano plane - Wikipedia

    en.wikipedia.org/wiki/Fano_plane

    The Fano plane is an example of an (n 3)-configuration, that is, a set of n points and n lines with three points on each line and three lines through each point. The Fano plane, a (7 3)-configuration, is unique and is the smallest such configuration. [11]

  3. Steiner system - Wikipedia

    en.wikipedia.org/wiki/Steiner_system

    The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t = 2 or (recently) t ≥ 2.

  4. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    The Fano plane, discussed below, is denoted by PG(2, 2). The third example above is the projective plane PG(2, 3). The Fano plane. Points are shown as dots; lines are shown as lines or circles. The Fano plane is the projective plane arising from the field of two elements. It is the smallest projective plane, with only seven points and seven lines.

  5. Galois geometry - Wikipedia

    en.wikipedia.org/wiki/Galois_geometry

    The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]

  6. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    The Fano plane. This particular projective plane is sometimes called the Fano plane. If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to

  7. Kirkman's schoolgirl problem - Wikipedia

    en.wikipedia.org/wiki/Kirkman's_schoolgirl_problem

    The Galois field GF(2) with two elements is used with four homogeneous coordinates to form PG(3,2) which has 15 points, 3 points to a line, 7 points and 7 lines in a plane. A plane can be considered a complete quadrilateral together with the line through its diagonal points. Each point is on 7 lines, and there are 35 lines in all.

  8. Incidence structure - Wikipedia

    en.wikipedia.org/wiki/Incidence_structure

    The Levi graph of the Fano plane is the Heawood graph. Since the Heawood graph is connected and vertex-transitive, there exists an automorphism (such as the one defined by a reflection about the vertical axis in the figure of the Heawood graph) interchanging black and white vertices. This, in turn, implies that the Fano plane is self-dual.

  9. Incidence geometry - Wikipedia

    en.wikipedia.org/wiki/Incidence_geometry

    The Fano plane cannot be represented in the Euclidean plane using only points and straight line segments (i.e., it is not realizable). This is a consequence of the Sylvester–Gallai theorem , according to which every realizable incidence geometry must include an ordinary line , a line containing only two points.