Search results
Results from the WOW.Com Content Network
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refracted , when entering a material.
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. [1] Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave ...
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
Young [6] [11] distinguished several regions where different methods for calculating astronomical refraction were applicable. In the upper portion of the sky, with a zenith distance of less than 70° (or an altitude over 20°), various simple refraction formulas based on the index of refraction (and hence on the temperature, pressure, and humidity) at the observer are adequate.
Let the angle of refraction, measured in the same sense, be θ t, where the subscript t stands for transmitted (reserving r for reflected). In the absence of Doppler shifts, ω does not change on reflection or refraction. Hence, by , the magnitude of the wave vector is proportional to the refractive index.