enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    In fact in order to answer a level ancestor query, the algorithm needs to jump from a path to another until it reaches the root and there could be Θ(√ n) of such paths on a leaf-to-root path. This leads us to an algorithm that can pre-process the tree in O(n) time and answers queries in O(√ n). In order to reach the optimal query time, we ...

  3. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths. Finding k shortest paths is possible by extending Dijkstra's algorithm or the Bellman-Ford algorithm. [citation needed]

  4. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

  5. 2-satisfiability - Wikipedia

    en.wikipedia.org/wiki/2-satisfiability

    The time bound for this algorithm is dominated by the time to solve a sequence of 2-satisfiability instances that are closely related to each other, and Ramnath (2004) shows how to solve these related instances more quickly than if they were solved independently from each other, leading to a total time bound of O(n 3) for the sum-of-diameters ...

  6. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.

  7. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    Maximum lengths of snakes (L s) and coils (L c) in the snakes-in-the-box problem for dimensions n from 1 to 4. The problem of finding the longest path or cycle that is an induced subgraph of a given hypercube graph is known as the snake-in-the-box problem. Szymanski's conjecture concerns the suitability of a hypercube as a network topology for ...

  8. Maximum flow problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_flow_problem

    The maximum flow problem can be seen as a special case of more complex network flow problems, such as the circulation problem. The maximum value of an s-t flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut (i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem .

  9. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    A few variants of the Chinese Postman Problem have been studied and shown to be NP-complete. [10] The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction.