Search results
Results from the WOW.Com Content Network
The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.
The Kruskal-Wallis test is indeed, in its most general application, a test of the null hypothesis that there is no stochastic dominance between any of the groups tested (i.e. H0: P(X i > X j) = 0.5 for all groups i and j, with HA: P(X i > X j) ≠ 0.5 for at least one i ≠ j). These hypotheses, and this test are not about means. I have cleaned ...
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.
The critical value is the number that the test statistic must exceed to reject the test. In this case, F crit (2,15) = 3.68 at α = 0.05. Since F=9.3 > 3.68, the results are significant at the 5% significance level. One would not accept the null hypothesis, concluding that there is strong evidence that the expected values in the three groups ...
The most common non-parametric test for the one-factor model is the Kruskal-Wallis test. The Kruskal-Wallis test is based on the ranks of the data. The advantage of the Van Der Waerden test is that it provides the high efficiency of the standard ANOVA analysis when the normality assumptions are in fact satisfied, but it also provides the ...
William Henry Kruskal (/ ˈ k r ʌ s k əl /; October 10, 1919 – April 21, 2005) was an American mathematician and statistician. He is best known for having formulated the Kruskal–Wallis one-way analysis of variance (together with W. Allen Wallis ), a widely used nonparametric statistical method .
Wilson Allen Wallis (November 5, 1912 – October 12, 1998) was an American economist and statistician who served as president of the University of Rochester. [3] He is best known for the Kruskal–Wallis one-way analysis of variance , which is named after him and William Kruskal .
In statistics, the Jonckheere trend test [1] (sometimes called the Jonckheere–Terpstra [2] test) is a test for an ordered alternative hypothesis within an independent samples (between-participants) design. It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population ...