Search results
Results from the WOW.Com Content Network
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The prime numbers p n , with n ≥ 1 . A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers.
So far, only three sequences of the family Q r,s are known, namely the U sequence with (r,s) = (1,2) (which is the original Q sequence); [19] the V sequence with (r,s) = (1,4); [20] and the W sequence with (r,s) = (2,4). [19] Only the V sequence, which does not behave as chaotically as the others, is proven not to "die". [19] Similar to the ...
The sequence of Hilbert primes begins 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, ... (sequence A057948 in the OEIS). A Hilbert prime is not necessarily a prime number; for example, 21 is a composite number since 21 = 3 ⋅ 7. However, 21 is a Hilbert
[3] [4] [5] They are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book Liber Abaci. [ 6 ] Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the Fibonacci ...
This sequence of approximations begins 1 / 1 , 3 / 2 , 7 / 5 , 17 / 12 , and 41 / 29 , so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers ; these numbers form a second infinite ...
The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a ).
In mathematics, a Somos sequence is a sequence of numbers defined by a certain recurrence relation, described below. They were discovered by mathematician Michael Somos . From the form of their defining recurrence (which involves division), one would expect the terms of the sequence to be fractions, but surprisingly, a few Somos sequences have ...
Second edition of the book. Neil Sloane started collecting integer sequences as a graduate student in 1964 to support his work in combinatorics. [8] [9] The database was at first stored on punched cards.