Search results
Results from the WOW.Com Content Network
Double-pulsed chronoamperometry waveform showing integrated region for charge determination.. In electrochemistry, chronoamperometry is an analytical technique in which the electric potential of the working electrode is stepped and the resulting current from faradaic processes occurring at the electrode (caused by the potential step) is monitored as a function of time.
The spike in anodic (positive) current observed between t 0 and t 1 is due to the oxidation of the analyte in the solution when the correct potential is reached. The current decreases after the initial spike as the concentration of oxidable analyte is depleted near the surface of the working electrode due to mass transport limitations.
Linear potential sweep. Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied.
Topographic (left) and current (right) maps collected with CAFM on a polycrystalline HfO 2 stack. The images show very good spatial correlation. In microscopy, conductive atomic force microscopy (C-AFM) or current sensing atomic force microscopy (CS-AFM) is a mode in atomic force microscopy (AFM) that simultaneously measures the topography of a material and the electric current flow at the ...
In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current ...
Amperometry in chemistry is the detection of ions in a solution based on electric current or changes in electric current. Amperometry is used in electrophysiology to study vesicle release events using a carbon fiber electrode.
The Tafel equation describes the dependence of current for an electrolytic process to overpotential. The exchange current density is the current in the absence of net electrolysis and at zero overpotential. The exchange current can be thought of as a background current to which the net current observed at various overpotentials is normalized.
It is defined as the current through the battery divided by the theoretical current draw under which the battery would deliver its nominal rated capacity in one hour. [51] It has the units h −1. Because of internal resistance loss and the chemical processes inside the cells, a battery rarely delivers nameplate rated capacity in only one hour.