Search results
Results from the WOW.Com Content Network
The Golgi apparatus (/ ˈ ɡ ɒ l dʒ i /), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. [1] Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles inside the cell before the vesicles are sent to their destination.
Golgi cell circuit functions also seem to be regulated by metabotropic glutamate receptors. Golgi cells possess mGluR2 receptors, [12] and when these receptors are activated, an inward rectifier K current is enhanced, aiding in the Golgi cell's silencing after a period of intensive granule cell-Golgi cell transmission. [13]
[8] [9] Enzymes of the lysosomes are synthesized in the rough endoplasmic reticulum and exported to the Golgi apparatus upon recruitment by a complex composed of CLN6 and CLN8 proteins. [ 10 ] [ 11 ] The enzymes are transported from the Golgi apparatus to lysosomes in small vesicles, which fuse with larger acidic vesicles.
The Golgi apparatus (also known as the Golgi body and the Golgi complex) is composed of separate sacs called cisternae. Its shape is similar to a stack of pancakes. The number of these stacks varies with the specific function of the cell. The Golgi apparatus is used by the cell for further protein modification.
For example, in epithelial cells, a special process called transcytosis allows some materials to enter one side of a cell and exit from the opposite side. Also, in some circumstances, late endosomes/MVBs fuse with the plasma membrane instead of with lysosomes, releasing the lumenal vesicles, now called exosomes , into the extracellular medium.
Throughout their journey in the cisterna, the proteins are packaged and are modified for transport throughout the cell. [2] The number of cisterna in the Golgi stack is dependent on the organism and cell type. [3] The structure, composition, and function of each of the cisternae may be different inside the Golgi stack.
In plant cells, Golgi vesicle secretions form a cell plate or septum on the equatorial plane of the cell wall by the action of microtubules of the phragmoplast. [2] The cleavage furrow in animal cells and the phragmoplast in plant cells are complex structures made up of microtubules and microfilaments that aide in the final separation of the ...
More specifically, CAV1 and CAV2 are responsible for caveolae formation in non-muscle cells while CAV3 functions in muscle cells. The process starts with CAV1 being synthesized in the ER where it forms detergent-resistant oligomers. Then, these oligomers travel through the Golgi complex before arriving at the cell surface to aid in caveolar ...