enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Removing the simplifying assumption of uniform gravitational acceleration provides more accurate results. We find from the formula for radial elliptic trajectories: The time t taken for an object to fall from a height r to a height x, measured from the centers of the two bodies, is given by:

  3. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    A typical skydiver in a spread-eagle position will reach terminal velocity after about 12 seconds, during which time they will have fallen around 450 m (1,500 ft). [4] Free fall was demonstrated on the Moon by astronaut David Scott on August 2, 1971. He simultaneously released a hammer and a feather from the same height above the Moon's surface.

  4. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where is the object's final velocity along the x axis ...

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.

  6. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    These equations apply to a particle moving linearly, in three dimensions in a straight line with constant acceleration. [9] Since the position, velocity, and acceleration are collinear (parallel, and lie on the same line) – only the magnitudes of these vectors are necessary, and because the motion is along a straight line, the problem ...

  8. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  9. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    The equation = + (+) = is of the form + + =, and such an equation can be transformed into an equation solvable by the function (see an example of such a transformation here). Some algebra shows that the total time of flight, in closed form, is given as [ 10 ]