enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    The distance between the points and is , the distance between the points and is = and the distance between the points and is = +. The value A {\displaystyle A} is positive or negative depending on which of the points P 1 {\displaystyle P_{1}} and P 2 {\displaystyle P_{2}} that is furthest away from the point F 1 {\displaystyle F_{1}} .

  3. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period T: a = G M T 2 4 π 2 3 {\displaystyle a={\sqrt[{3}]{\frac {GMT^{2}}{4\pi ^{2}}}}} For instance, for completing an orbit every 24 hours around a mass of 100 kg , a small body has to orbit at a distance of 1.08 meters from the central body's ...

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The period of the resultant orbit will be less than that of the original circular orbit. Thrust applied in the direction of the satellite's motion creates an elliptical orbit with its highest point 180 degrees away from the firing point. The period of the resultant orbit will be longer than that of the original circular orbit.

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. Kepler published the first two laws in 1609 and the third law in 1619. They supplanted earlier models of the Solar System, such as those of Ptolemy and Copernicus. Kepler's laws apply only in the limited case of the two-body ...

  7. Orbit phasing - Wikipedia

    en.wikipedia.org/wiki/Orbit_phasing

    The difference in period time between the original and phasing orbits will be equal to the time converted from the phase angle. Once one period of the phasing orbit is complete, the spacecraft will return to the POI and the spacecraft will once again be subjected to a second impulse, equal and opposite to the first impulse, to return it to the ...

  8. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    represent three particles with masses , distances = , and coordinates (i,j = 1,2,3) in an inertial coordinate system ... the problem is described by nine second-order differential equations. [ 4 ] : 8

  9. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    By contrast, subtracting equation (2) from equation (1) results in an equation that describes how the vector r = x 1 − x 2 between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories x 1 ( t ) and x 2 ( t ) .