Search results
Results from the WOW.Com Content Network
The sides of this rhombus have length 1. The angle between the horizontal line and the shown diagonal is 1 / 2 (a + b).This is a geometric way to prove the particular tangent half-angle formula that says tan 1 / 2 (a + b) = (sin a + sin b) / (cos a + cos b).
The half-angle formula for cosine can be obtained by replacing with / and taking the square-root of both sides: (/) = (+ ) /. Sine power-reduction formula: an illustrative diagram. The shaded blue and green triangles, and the red-outlined triangle E B D {\displaystyle EBD} are all right-angled and similar, and all contain the angle θ ...
1.7 Half-angle identities. 1.8 Miscellaneous – the triple tangent identity. 1.9 Miscellaneous ... It can also be proved using Euler's formula ...
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...
This page was last edited on 8 December 2021, at 13:33 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Once an angle opposite a known side is computed, the remaining side c can be computed using the law of sines. In the time before electronic calculators were available, this method was preferable to an application of the law of cosines c = √ a 2 + b 2 − 2 ab cos γ , as this latter law necessitated an additional lookup in a logarithm table ...
Half-angle and angle-addition formulas [ edit ] Historically, the earliest method by which trigonometric tables were computed, and probably the most common until the advent of computers, was to repeatedly apply the half-angle and angle-addition trigonometric identities starting from a known value (such as sin(π/2) = 1, cos(π/2) = 0).
The values ,, are all positive and satisfy + + =; this "triple tangent identity" is the half-angle tangent version of the fundamental triangle identity written as + + = radians (that is, 90°), as can be proved using the addition formula for tangents.