Search results
Results from the WOW.Com Content Network
In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that uses wideband linear frequency modulated chirp pulses to encode information. [1] A chirp is a sinusoidal signal whose frequency increases or decreases over time (often with a polynomial expression for the relationship between time and frequency).
Moreover, for a given noise power spectral density (PSD), spread-spectrum systems require the same amount of energy per bit before spreading as narrowband systems and therefore the same amount of power if the bitrate before spreading is the same, but since the signal power is spread over a large bandwidth, the signal PSD is much lower — often ...
A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. [1] It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications (see chirp spread spectrum). This ...
The spectrum is of particular interest when pulses are subject to signal processing. For example, when a chirp pulse is compressed by its matched filter, the resulting waveform contains not only a main narrow pulse but, also, a variety of unwanted artifacts many of which are directly attributable to features in the chirp's spectral characteristics.
For the case of a carrier modulated by a single sine wave, the resulting frequency spectrum can be calculated using Bessel functions of the first kind, as a function of the sideband number and the modulation index. The carrier and sideband amplitudes are illustrated for different modulation indices of FM signals.
DASH7, a low latency, bi-directional firmware standard that operates over multiple LPWAN radio technologies including LoRa. Wize is an open and royalty-free standard for LPWAN derived from the European Standard Wireless Mbus. [3] Chirp spread spectrum (CSS) based devices. Sigfox, UNB-based technology and French company. [4]
Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.
A Barker code resembles a discrete version of a continuous chirp, another low-autocorrelation signal used in other pulse compression radars. The positive and negative amplitudes of the pulses forming the Barker codes imply the use of biphase modulation or binary phase-shift keying; that is, the change of phase in the carrier wave is 180 degrees.