Search results
Results from the WOW.Com Content Network
In fluid dynamics, the Taylor number (Ta) is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about an axis, relative to viscous forces. [1] In 1923 Geoffrey Ingram Taylor introduced this quantity in his article on the stability of flow. [2]
Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at (), the value at risk of level . [2] Under some other settings, TVaR is the conditional expectation of loss above a given value, whereas the expected shortfall is the product of this value with the probability of ...
Critical value or threshold value can refer to: A quantitative threshold in medicine, chemistry and physics; Critical value (statistics), boundary of the acceptance region while testing a statistical hypothesis; Value of a function at a critical point (mathematics) Critical point (thermodynamics) of a statistical system.
The following table lists values for t distributions with ν degrees of freedom for a range of one-sided or two-sided critical regions. The first column is ν , the percentages along the top are confidence levels α , {\displaystyle \ \alpha \ ,} and the numbers in the body of the table are the t α , n − 1 {\displaystyle t_{\alpha ,n-1 ...
In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2] [3]
For a 2-tailed test, multiply that number by two to obtain the p-value. If the p-value is below a given significance level, one rejects the null hypothesis (at that significance level) that the quantities are statistically independent. Numerous adjustments should be added to when accounting for ties.
A-segregates are predicted to form when the Rayleigh number exceeds a certain critical value. This critical value is independent of the composition of the alloy, and this is the main advantage of the Rayleigh number criterion over other criteria for prediction of convectional instabilities, such as Suzuki criterion. Torabi Rad et al. showed ...
Using an averaged value for several cross-section evaluations and 3 test samples for the same geometry a strain pair (one point in the forming limit diagram) as forming limit is identified. It is recognized by some authors that the nature of fracture and formability is intrinsically non-deterministic, since large variations might be observed ...