Search results
Results from the WOW.Com Content Network
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
Colonial morphology serves as the first step in the identification of microbial species from clinical samples. [10] Based on the visual appearance of the colonies, microbiologists can narrow down the list of possible organisms, allowing them to select appropriate tests to provide a definitive diagnosis.
Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]
[note 1] A carpel is the female reproductive part of the flower—usually composed of the style, and stigma (sometimes having its individual ovary, and sometimes connecting to a shared basal ovary) —and usually interpreted as modified leaves that bear structures called ovules, inside which egg cells ultimately form. A pistil may consist of ...
The stigma, together with the style and ovary (typically called the stigma-style-ovary system) comprises the pistil, which is part of the gynoecium or female reproductive organ of a plant. The stigma itself forms the distal portion of the style, or stylodia, and is composed of stigmatic papillae , the cells of which are receptive to pollen.
Cell shape is generally characteristic of a given bacterial species, but can vary depending on growth conditions. Some bacteria have complex life cycles involving the production of stalks and appendages (e.g. Caulobacter) and some produce elaborate structures bearing reproductive spores (e.g. Myxococcus, Streptomyces).
Cyanobacterial morphology refers to the form or shape of cyanobacteria. Cyanobacteria are a large and diverse phylum of bacteria defined by their unique combination of pigments and their ability to perform oxygenic photosynthesis. [2] [3] Cyanobacteria often live in colonial aggregates that can take a multitude of forms. [3]
Each pollen grain contains a vegetative cell, and a generative cell that divides to form two sperm cells. Abiotic vectors such as wind, water, or biotic vectors such as animals carry out the pollen distribution. Once a pollen grain settles on a compatible pistil, it may germinate in response to a sugary fluid secreted by the mature stigma.