Search results
Results from the WOW.Com Content Network
To get colorful images of the set, the assignment of a color to each value of the number of executed iterations can be made using one of a variety of functions (linear, exponential, etc.). One practical way, without slowing down calculations, is to use the number of executed iterations as an entry to a palette initialized at
Symbolic circuit analysis is a formal technique of circuit analysis to calculate the behaviour or characteristic of an electric/electronic circuit with the independent variables (time or frequency), the dependent variables (voltages and currents), and (some or all of) the circuit elements represented by symbols.
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
Visual language for simulation and Model Based Design. Used in business, science and engineering. Performs complex scalar or matrix based ODE solving with parametric optimization. Has 2D and 3D plotting, 3D animation, and state transition built in. Yorick: n/a n/a n/a 9 January 2015: Free GPL: Programmable, callable 2D+3D plotting.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
The Gram–Schmidt process takes a finite, linearly independent set of vectors = {, …,} for k ≤ n and generates an orthogonal set ′ = {, …,} that spans the same -dimensional subspace of as . The method is named after Jørgen Pedersen Gram and Erhard Schmidt , but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt. [ 1 ]
To plot this, one may use the circumferential (reflection coefficient) angle scale to find the graduation and a ruler to draw a line passing through this and the centre of the Smith chart. The length of the line would then be scaled to P 1 assuming the Smith chart radius to be unity.
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.