Search results
Results from the WOW.Com Content Network
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only. The column is free from initial stress. The weight of the column is neglected. The column is initially straight (no eccentricity of the axial load).
Limit load is the maximum load that a structure can safely carry. It's the load at which the structure is in a state of incipient plastic collapse. As the load on the structure increases, the displacements increases linearly in the elastic range until the load attains the yield value.
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
where Ur is the modulus of resilience, σy is the yield strength, εy is the yield strain, and E is the Young's modulus. [1] This analysis is not valid for non-linear elastic materials like rubber, for which the approach of area under the curve until elastic limit must be used.
The formula reduces to the Tresca criterion if =. Figure 5 shows Mohr–Coulomb yield surface in the three-dimensional space of principal stresses. It is a conical prism and determines the inclination angle of conical surface. Figure 6 shows Mohr–Coulomb yield surface in two-dimensional stress space.