Search results
Results from the WOW.Com Content Network
In quantum mechanics, physicists often use the terms "force" and "interaction" interchangeably; for example, the weak interaction is sometimes referred to as the "weak force". According to the present understanding, there are four fundamental interactions or forces: gravitation , electromagnetism, the weak interaction , and the strong interaction.
Analog models of gravity are attempts to model various phenomena of general relativity (e.g., black holes or cosmological geometries) using other physical systems such as waves in a moving fluid and electromagnetic waves in a dielectric medium. [1]
In the context of atomic nuclei, the force binds protons and neutrons together to form a nucleus and is called the nuclear force (or residual strong force). [2] Because the force is mediated by massive, short lived mesons on this scale, the residual strong interaction obeys a distance-dependent behavior between nucleons that is quite different ...
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
In general, their ground states tend towards a prolate shape, [33] although experimental data hint at oblate ground-state shapes in certain nuclei, for example krypton-72. [34] Experiments also suggest that some heavy nuclei, such as barium-144 and radium-224, possess asymmetric pear shapes evidenced by their measured octupole moments.
The DGP model assumes the existence of a 4+1-dimensional Minkowski space, within which ordinary 3+1-dimensional Minkowski space is embedded.The model assumes an action consisting of two terms: One term is the usual Einstein–Hilbert action, which involves only the 4-D spacetime dimensions.
An example of this theory was proposed by H. Dehnen and H. Frommert 1991, parting from the nature of Higgs field interacting gravitational- and Yukawa (long-ranged)-like with the particles that get mass through it. [7] [8] [9] The Watt–Misner theory (1999) is a recent example of a scalar theory of gravitation. It is not intended as a viable ...
Since the 19th century, some physicists, notably Albert Einstein, have attempted to develop a single theoretical framework that can account for all the fundamental forces of nature – a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics.