Search results
Results from the WOW.Com Content Network
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).
A gravity map is a map that depicts gravity measurements across an area of space, which are typically obtained via gravimetry. Gravity maps are an extension of the field of geodynamics. Readings are typically taken at regular intervals for surface analysis on Earth. [1] Other methods include analysis of artificial satellite orbital mechanics ...
The actual Hill radius for the Earth-Moon pair is on the order of 60,000 km (i.e., extending less than one-sixth the distance of the 378,000 km between the Moon and the Earth). [9] In the Earth-Sun example, the Earth (5.97 × 10 24 kg) orbits the Sun (1.99 × 10 30 kg) at a distance of 149.6 million km, or one astronomical unit (AU). The Hill ...
rad/s is the diurnal angular speed of the Earth axis, and km the radius of the reference sphere, and the distance of the point on the Earth crust to the Earth axis. [3] For the mass attraction effect by itself, the gravitational acceleration at the equator is about 0.18% less than that at the poles due to being located farther from the mass ...
Earth's western hemisphere showing topography relative to Earth's center instead of to mean sea level, as in common topographic maps. Earth has a rounded shape, through hydrostatic equilibrium, [85] with an average diameter of 12,742 kilometres (7,918 mi), making it the fifth largest planetary sized and largest terrestrial object of the Solar ...
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
If Earth's shape were perfectly known together with the exact mass density ρ = ρ(x, y, z), it could be integrated numerically (when combined with a reciprocal distance kernel) to find an accurate model for Earth's gravitational field. However, the situation is in fact the opposite: by observing the orbits of spacecraft and the Moon, Earth's ...
where ρ 2 = ρ(x, y, z) is the mass density at the volume element and of the direction from the volume element to point mass 1. is the gravitational potential energy per unit mass. Earth's gravity field can be derived from a gravity potential (geopotential) field as follows: