Search results
Results from the WOW.Com Content Network
Nanoparticles differ in their physical properties such as size, shape, and dispersion, which must be measured to fully describe them. The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles.,. [1]
NEMO 3-D [10] – enables multi-million atom electronic structure simulations in empirical tight binding; open source; an educational version is on nanoHUB and Quantum Dot Lab [11] nextnano [ 12 ] allows simulating geometry, electronic properties and electrical transport phenomena in various nanostructures using continuum models (commercial ...
Interferometric nanoparticle tracking analysis (iNTA) is the next generation of NTA technology. It is based on interferometric scattering microscopy (iSCAT), which enhances the signal of weak scatterers. In contrast to NTA, iNTA has a superior resolution based on a two-parameter analysis, including the size and the scattering cross-section of ...
Three-dimensional X-ray diffraction (3DXRD) is a microscopy technique using hard X-rays (with energy in the 30-100 keV range) to investigate the internal structure of polycrystalline materials in three dimensions.
The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer.
Surface X-ray diffraction (SXRD), which is similar to RHEED but uses X-rays, and is also used to interrogate surface structure. [3] X-ray standing waves, another X-ray variant where the intensity decay into a sample from diffraction is used to analyze chemistry. [4]
Rietveld refinement is a technique described by Hugo Rietveld for use in the characterisation of crystalline materials. The neutron and X-ray diffraction of powder samples results in a pattern characterised by reflections (peaks in intensity) at certain positions.
X-ray crystal truncation rod scattering is a powerful method in surface science, based on analysis of surface X-ray diffraction (SXRD) patterns from a crystalline surface. For an infinite crystal, the diffracted pattern is concentrated in Dirac delta function like Bragg peaks.