Search results
Results from the WOW.Com Content Network
Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population. The numerical value of the mode is the same as that of the mean and median in a normal distribution, and it may be very different in highly skewed distributions.
Most commonly, using the 2-norm generalizes the mean to k-means clustering, while using the 1-norm generalizes the (geometric) median to k-medians clustering. Using the 0-norm simply generalizes the mode (most common value) to using the k most common values as centers.
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter is the variance. The standard deviation of the distribution is σ {\textstyle \sigma } (sigma).
Comparison of mean, median and mode of two log-normal distributions with different skewness. The mode is the point of global maximum of the probability density function. In particular, by solving the equation () ′ =, we get that: [] =.
The median of a normal distribution with mean μ and variance σ 2 is μ. In fact, for a normal distribution, mean = median = mode. The median of a uniform distribution in the interval [a, b] is (a + b) / 2, which is also the mean. The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter.
While for a beta distribution with equal shape parameters α = β, it follows that skewness = 0 and mode = mean = median = 1/2, the geometric mean is less than 1/2: 0 < G X < 1/2. The reason for this is that the logarithmic transformation strongly weights the values of X close to zero, as ln( X ) strongly tends towards negative infinity as X ...
This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]