Search results
Results from the WOW.Com Content Network
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
A 4Pi microscope is a laser scanning fluorescence microscope with an improved axial resolution. With it the typical range of the axial resolution of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy .
Köhler illumination is a method of specimen illumination used for transmitted and reflected light (trans- and epi-illuminated) optical microscopy.Köhler illumination acts to generate an even illumination of the sample and ensures that an image of the illumination source (for example a halogen lamp filament) is not visible in the resulting image.
A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed. TIRFM is an imaging modality which uses the excitation of fluorescent cells in a thin optical specimen section that is supported on a glass slide.
Endomicroscopy is a technique for obtaining histology-like images from inside the human body in real-time, [1] [2] [3] a process known as ‘optical biopsy’. [4] [5] It generally refers to fluorescence confocal microscopy, although multi-photon microscopy and optical coherence tomography have also been adapted for endoscopic use.
By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...
The image of a point source is also a three dimensional (3D) intensity distribution which can be represented by a 3D point-spread function. As an example, the figure on the right shows the 3D point-spread function in object space of a wide-field microscope (a) alongside that of a confocal microscope (c).