Search results
Results from the WOW.Com Content Network
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance.
An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.
White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors, were proposed by Halbert White in 1980. [1]
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance ...
Suppose that we estimate the regression model = + +, and obtain from this fitted model a set of values for ^, the residuals. Ordinary least squares constrains these so that their mean is 0 and so, given the assumption that their variance does not depend on the independent variables, an estimate of this variance can be obtained from the average of the squared values of the residuals.
A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model where the standard assumptions of regression analysis do not apply. [1] It was devised by Whitney K. Newey and Kenneth D. West in 1987, although there are a number of later variants.
The ZD-GARCH model does not require + =, and hence it nests the Exponentially weighted moving average (EWMA) model in "RiskMetrics". Since the drift term ω = 0 {\displaystyle ~\omega =0} , the ZD-GARCH model is always non-stationary, and its statistical inference methods are quite different from those for the classical GARCH model.
The two regression lines are those estimated by ordinary least squares (OLS) and by robust MM-estimation. The analysis was performed in R using software made available by Venables and Ripley (2002). The two regression lines appear to be very similar (and this is not unusual in a data set of this size).