enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...

  3. File:Electron affinity of the elements.svg - Wikipedia

    en.wikipedia.org/wiki/File:Electron_affinity_of...

    English: electron affinity of the elements plotted against atomic number (the lines are an guide to the eye showing the trend per period; noble gases are "group 0" that starts a trend). Deutsch: Elektronenaffinität der Elemente aufgetragen über ihrer Ordnungszahl (die Hilfslinien zeigen den Trend innerhalb der Perioden; Edelgase sind in ...

  4. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    In any case, the value of the electron affinity of a solid substance is very different from the chemistry and atomic physics electron affinity value for an atom of the same substance in gas phase. For example, a silicon crystal surface has electron affinity 4.05 eV, whereas an isolated silicon atom has electron affinity 1.39 eV.

  5. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.

  6. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    The collection of negatively charged electrons orbiting the nucleus display an affinity for certain configurations and numbers of electrons that make their orbits stable. Which chemical element an atom represents is determined by the number of protons in the nucleus; the neutral atom will have an equal number of electrons orbiting that nucleus ...

  7. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    If the nucleus is assumed to be spherically symmetric, an approximate relationship between nuclear radius and mass number arises above A=40 from the formula R=R o A 1/3 with R o = 1.2 ± 0.2 fm. [6] R is the predicted spherical nuclear radius, A is the mass number, and R o is a constant determined by experimental

  8. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    This page shows the electron configurations of the neutral gaseous atoms in their ground states. For each atom the subshells are given first in concise form, then with all subshells written out, followed by the number of electrons per shell. For phosphorus (element 15) as an example, the concise form is [Ne] 3s 2 3p 3.

  9. Relativistic quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_chemistry

    Bohr calculated that a 1s orbital electron of a hydrogen atom orbiting at the Bohr radius of 0.0529 nm travels at nearly 1/137 the speed of light. [11] One can extend this to a larger element with an atomic number Z by using the expression v ≈ Z c 137 {\displaystyle v\approx {\frac {Zc}{137}}} for a 1s electron, where v is its radial velocity ...