Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
The following formula approximates the Earth's gravity variation with altitude: = (+) where g h is the gravitational acceleration at height h above sea level. R e is the Earth's mean radius. g 0 is the standard gravitational acceleration.
Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity. It is not yet known how gravity can be unified with the three non-gravitational forces: strong, weak and electromagnetic.
General relativity also predicts novel effects of gravity, such as gravitational waves, gravitational lensing and an effect of gravity on time known as gravitational time dilation. Many of these predictions have been confirmed by experiment or observation, most recently gravitational waves.
The Gravity Recovery and Climate Experiment (GRACE) mission launched in 2002 consists of two probes, nicknamed "Tom" and "Jerry", in polar orbit around the Earth measuring differences in the distance between the two probes in order to more precisely determine the gravitational field around the Earth, and to track changes that occur over time ...
The gravity gradient (variation with height) above Earth's surface is about 3.1 μGal per centimeter of height (3.1 × 10 −6 s −2), resulting in a maximal difference of about 2 Gal (0.02 m/s 2) from the top of Mount Everest to sea level. [6]
General relativity also predicts novel effects of gravity, such as gravitational waves, gravitational lensing and an effect of gravity on time known as gravitational time dilation. Many of these predictions have been confirmed by experiment or observation, while others are the subject of ongoing research.
The strong equivalence principle can be tested by 1) finding orbital variations in massive bodies (Sun-Earth-Moon), 2) variations in the gravitational constant (G) depending on nearby sources of gravity or on motion, or 3) searching for a variation of Newton's gravitational constant over the life of the universe [14]: 47