Search results
Results from the WOW.Com Content Network
As a consequence of the Pythagorean theorem, the hypotenuse is the longest side of any right triangle; that is, the hypotenuse is longer than either of the triangle's legs. For example, given the length of the legs a = 5 and b = 12, then the sum of the legs squared is (5 × 5) + (12 × 12) = 169, the square of the hypotenuse.
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
(This is the angle α opposite the "rise" side of a triangle with a right angle between vertical rise and horizontal run.) as a percentage, the formula for which is which is equivalent to the tangent of the angle of inclination times 100. In Europe and the U.S. percentage "grade" is the most commonly used figure for describing slopes.
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six ...
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
Explicitly, they are defined below as functions of the known angle A, where a, b and h refer to the lengths of the sides in the accompanying figure. In the following definitions, the hypotenuse is the side opposite to the 90-degree angle in a right triangle; it is the longest side of the triangle and one of the two sides adjacent to angle A.
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...