enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mars cycler - Wikipedia

    en.wikipedia.org/wiki/Mars_cycler

    Neither orbit is perfectly circular; Earth has an orbital eccentricity of 0.0168, and Mars of 0.0934. The two orbits are not quite coplanar either, as the orbit of Mars is inclined by 1.85 degrees to that of Earth. The effect of the gravity of Mars on the cycler orbits is almost negligible, but that of the far more massive Earth needs to be ...

  3. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5] The Parker Solar Probe (via Venus) plans a maximum C 3 of 154 km 2 /s 2. [6] Typical ballistic C 3 (km 2 /s 2) to get from Earth to various planets: Mars 8-16, [7] Jupiter 80, Saturn or Uranus 147. [8] To Pluto (with its orbital inclination) needs about 160–164 km 2 /s 2. [9]

  4. File:GMM-3 Mars Gravity.webm - Wikipedia

    en.wikipedia.org/wiki/File:GMM-3_Mars_Gravity.webm

    Original file (WebM audio/video file, VP8/Opus, length 1 min 28 s, 1,280 × 720 pixels, 1.29 Mbps overall, file size: 13.56 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  5. Cycler - Wikipedia

    en.wikipedia.org/wiki/Cycler

    A lunar cycler or Earth–Moon cycler is a cycler orbit, or spacecraft therein, which periodically passes close by the Earth and the Moon, using gravity assists and occasional propellant-powered corrections to maintain its trajectories between the two. If the fuel required to reach a particular cycler orbit from both the Earth and the Moon is ...

  6. Areosynchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Areosynchronous_orbit

    The areosynchronous orbits (ASO) are the synchronous orbits for artificial satellites around the planet Mars. They are the martian equivalent of the geosynchronous orbits (GSO) on the Earth . The prefix areo- derives from Ares , the ancient Greek god of war and counterpart to the Roman god Mars , with whom the planet was identified.

  7. Free-return trajectory - Wikipedia

    en.wikipedia.org/wiki/Free-return_trajectory

    Sketch of a circumlunar free return trajectory (not to scale), plotted on the rotating reference frame rotating with the moon. (Moon's motion only shown for clarity) In orbital mechanics, a free-return trajectory is a trajectory of a spacecraft traveling away from a primary body (for example, the Earth) where gravity due to a secondary body (for example, the Moon) causes the spacecraft to ...

  8. The New Shepard mission is far from the first to carry scientific payloads to the edge of space, but it was the first to mimic the moon's gravity.. The gravitational pull of the lunar surface is ...

  9. Interplanetary Transport Network - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_Transport...

    The orbits for two of the points, L 4 and L 5, are stable, but the halo orbits for L 1 through L 3 are stable only on the order of months. In addition to orbits around Lagrange points, the rich dynamics that arise from the gravitational pull of more than one mass yield interesting trajectories, also known as low energy transfers . [ 4 ]