Search results
Results from the WOW.Com Content Network
A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well.
The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication). Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.
Comment: Is analogous to the SVD except that the diagonal elements of S are invariant with respect to left and/or right multiplication of A by arbitrary nonsingular diagonal matrices, as opposed to the standard SVD for which the singular values are invariant with respect to left and/or right multiplication of A by arbitrary unitary matrices.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
The identity matrix under Hadamard multiplication of two m × n matrices is an m × n matrix where all elements are equal to 1. This is different from the identity matrix under regular matrix multiplication, where only the elements of the main diagonal are equal to 1. Furthermore, a matrix has an inverse under Hadamard multiplication if and ...
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is
Any circulant is a matrix polynomial (namely, the associated polynomial) in the cyclic permutation matrix: = + + + + = (), where is given by the companion matrix = []. The set of n × n {\displaystyle n\times n} circulant matrices forms an n {\displaystyle n} - dimensional vector space with respect to addition and scalar multiplication.