enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA supercoil - Wikipedia

    en.wikipedia.org/wiki/DNA_supercoil

    Supercoiled structure of linear DNA molecules with constrained ends. The helical nature of the DNA duplex is omitted for clarity. DNA supercoiling refers to the amount of twist in a particular DNA strand, which determines the amount of strain on it. A given strand may be "positively supercoiled" or "negatively supercoiled" (more or less tightly ...

  3. Nick (DNA) - Wikipedia

    en.wikipedia.org/wiki/Nick_(DNA)

    The diagram shows the effects of nicks on intersecting DNA in a twisted plasmid. Nicking can be used to dissipate the energy held up by intersecting states. The nicks allow the DNA to take on a circular shape. [2] The diagram shows the effects of nicks on intersecting DNA forms. A plasmid is tightly wound into a negative supercoil (a).

  4. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    DNA in cells is negatively supercoiled and has the tendency to unwind. Hence the separation of strands is easier in negatively supercoiled DNA than in relaxed DNA. The two components of supercoiled DNA are solenoid and plectonemic. The plectonemic supercoil is found in prokaryotes, while the solenoidal supercoiling is mostly seen in eukaryotes.

  5. DNA gyrase - Wikipedia

    en.wikipedia.org/wiki/DNA_gyrase

    Scheme of gyrase structure. DNA gyrase is a tetrameric enzyme that consists of 2 GyrA ("A") and 2 GyrB ("B") subunits. [8] Structurally the complex is formed by 3 pairs of "gates", sequential opening and closing of which results into the direct transfer of DNA segment and introduction of 2 negative supercoils.

  6. Solenoid (DNA) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(DNA)

    The solenoid structure can increase this to be 40 times smaller. [2] When DNA is compacted into the solenoid structure can still be transcriptionally active in certain areas. [7] It is the secondary chromatin structure that is important for this transcriptional repression as in vivo active genes are assembled in large tertiary chromatin ...

  7. Molecular models of DNA - Wikipedia

    en.wikipedia.org/wiki/Molecular_models_of_DNA

    The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.

  8. Structural motif - Wikipedia

    en.wikipedia.org/wiki/Structural_motif

    The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence when read in opposite directions, base-pair to form a double helix that ends in an unpaired loop. The resulting structure is a key building block of many RNA secondary structures. Cruciform DNA

  9. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    In 1951, Pauling published the structure of the alpha helix, a fundamentally important structural component of proteins. In early 1953, Pauling published a triple helix model of DNA, which subsequently turned out to be incorrect. [3] Both Crick, and particularly Watson, thought that they were racing against Pauling to discover the structure of DNA.