Search results
Results from the WOW.Com Content Network
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times.
According to Newton's law of gravity, and independently verified by experiments such as that of Eötvös and its successors (see Eötvös experiment), there is a universality of free fall (also known as the weak equivalence principle, or the universal equality of inertial and passive-gravitational mass): the trajectory of a test body in free ...
A stronger version of the equivalence principle, known as the Einstein equivalence principle or the strong equivalence principle, lies at the heart of the general theory of relativity. Einstein's equivalence principle states that within sufficiently small regions of spacetime, it is impossible to distinguish between a uniform acceleration and a ...
Eötvös's team followed this with a series of similar but more accurate experiments, as well as experiments with different types of materials and in different locations around the Earth, all of which demonstrated the same equivalence in mass.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
Conversely, energy is released when a nucleus is created from free nucleons or other nuclei: the nuclear binding energy. Because of mass–energy equivalence (i.e. Einstein's formula E = mc 2), releasing this energy causes the mass of the nucleus to be lower than the total mass of the individual nucleons, leading to the so-called "mass defect". [6]
The energy efficiency of a process involving chemical change may be expressed relative to these theoretical minima or maxima.The difference between the change of enthalpy and the change of Gibbs energy of a chemical transformation at a particular temperature indicates the heat input required or the heat removal (cooling) required to maintain ...
The primary objective of chemical thermodynamics is the establishment of a criterion for determination of the feasibility or spontaneity of a given transformation. [3] In this manner, chemical thermodynamics is typically used to predict the energy exchanges that occur in the following processes: Chemical reactions; Phase changes; The formation ...