enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    An element a in a magma (M, ∗) has the two-sided cancellation property (or is cancellative) if it is both left- and right-cancellative. A magma (M, ∗) has the left cancellation property (or is left-cancellative) if all a in the magma are left cancellative, and similar definitions apply for the right cancellative or two-sided cancellative ...

  3. Cancellative semigroup - Wikipedia

    en.wikipedia.org/wiki/Cancellative_semigroup

    In mathematics, a cancellative semigroup (also called a cancellation semigroup) is a semigroup having the cancellation property. [1] In intuitive terms, the cancellation property asserts that from an equality of the form a·b = a·c, where · is a binary operation, one can cancel the element a and deduce the equality b = c.

  4. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    The cancellation property holds in any integral domain: for any a, b, and c in an integral domain, if a ≠ 0 and ab = ac then b = c. Another way to state this is that the function x ↦ ax is injective for any nonzero a in the domain. The cancellation property holds for ideals in any integral domain: if xI = xJ, then either x is zero or I = J.

  5. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    A monoid (M, •) has the cancellation property (or is cancellative) if for all a, b and c in M, the equality a • b = a • c implies b = c, and the equality b • a = c • a implies b = c. A commutative monoid with the cancellation property can always be embedded in a group via the Grothendieck group construction.

  6. Cayley table - Wikipedia

    en.wikipedia.org/wiki/Cayley_table

    An alternative and more succinct proof follows from the cancellation property. This property implies that for each x in the group, the one variable function of y f(x,y)= xy must be a one-to-one map. The result follows from the fact that one-to-one maps on finite sets are permutations.

  7. Cancel - Wikipedia

    en.wikipedia.org/wiki/Cancel

    Project cancellation, in government and industry; Cancellation (mail), a postal marking applied to a stamp or stationery indicating the item has been used; Cancellation (insurance), the termination of an insurance policy; Flight cancellation and delay, not operating a scheduled flight

  8. Category:Properties of binary operations - Wikipedia

    en.wikipedia.org/wiki/Category:Properties_of...

    This page was last edited on 8 February 2021, at 10:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Grothendieck group - Wikipedia

    en.wikipedia.org/wiki/Grothendieck_group

    In mathematics, the Grothendieck group, or group of differences, [1] of a commutative monoid M is a certain abelian group.This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M.