Search results
Results from the WOW.Com Content Network
The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [ 1 ] d C m d C L = 0 {\displaystyle {dC_{m} \over dC_{L}}=0} where C L {\displaystyle C_{L}} is the aircraft lift coefficient .
The center of gravity (CG) of an aircraft is the point over which the aircraft would balance. [1] Its position is calculated after supporting the aircraft on at least two sets of weighing scales or load cells and noting the weight shown on each set of scales or load cells. The center of gravity affects the stability of the aircraft.
The way the center of pressure moves as lift coefficient changes makes it difficult to use the center of pressure in the mathematical analysis of longitudinal static stability of an aircraft. For this reason, it is much simpler to use the aerodynamic center when carrying out a mathematical analysis.
Mean aerodynamic chord (MAC) is defined as: [6] = (), where y is the coordinate along the wing span and c is the chord at the coordinate y.Other terms are as for SMC. The MAC is a two-dimensional representation of the whole wing. The pressure distribution over the entire wing can be reduced to a single lift force
The other two reference frames are body-fixed, with origins moving along with the aircraft, typically at the center of gravity. For an aircraft that is symmetric from right-to-left, the frames can be defined as: Body frame Origin - airplane center of gravity; x b axis - positive out the nose of the aircraft in the plane of symmetry of the aircraft
The aerodynamic center of an airfoil is usually close to 25% of the chord behind the leading edge of the airfoil. When making tests on a model airfoil, such as in a wind-tunnel, if the force sensor is not aligned with the quarter-chord of the airfoil, but offset by a distance x, the pitching moment about the quarter-chord point, / is given by
The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag.
Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft.. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air.