Search results
Results from the WOW.Com Content Network
Time-series of mel-frequency cepstrum coefficients. 8,800 Text Classification 2010 [124] [125] M. Bedda et al. ISOLET Dataset Spoken letter names. Features extracted from sounds. 7797 Text Classification 1994 [126] [127] R. Cole et al. Japanese Vowels Dataset Nine male speakers uttered two Japanese vowels successively.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Panel data is the general class, a multidimensional data set, whereas a time series data set is a one-dimensional panel (as is a cross-sectional dataset). A data set may exhibit characteristics of both panel data and time series data. One way to tell is to ask what makes one data record unique from the other records.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
There are a number of methods available to oversample a dataset used in a typical classification problem (using a classification algorithm to classify a set of images, given a labelled training set of images). The most common technique is known as SMOTE: Synthetic Minority Over-sampling Technique. [4]
time-series-classification (Java) a package for time series classification using DTW in Weka. The DTW suite provides Python and R packages with a comprehensive coverage of the DTW algorithm family members, including a variety of recursion rules (also called step patterns), constraints, and substring matching.
Orange is an open-source software package released under GPL and hosted on GitHub.Versions up to 3.0 include core components in C++ with wrappers in Python.From version 3.0 onwards, Orange uses common Python open-source libraries for scientific computing, such as numpy, scipy and scikit-learn, while its graphical user interface operates within the cross-platform Qt framework.
Time series models are a subset of machine learning that utilize time series in order to understand and forecast data using past values. A time series is the sequence of a variable's value over equally spaced periods, such as years or quarters in business applications. [11]