Search results
Results from the WOW.Com Content Network
Protein–lipid interaction is the influence of membrane proteins on the lipid physical state or vice versa. The questions which are relevant to understanding of the structure and function of the membrane are: 1) Do intrinsic membrane proteins bind tightly to lipids (see annular lipid shell ), and what is the nature of the layer of lipids ...
Plasma lipoprotein particles are commonly divided into five main classes, based on size, lipid composition, and apolipoprotein content: HDL, LDL, IDL, VLDL and chylomicrons. Subgroups of these plasma particles are primary drivers or modulators of atherosclerosis. [1]
Each native IDL particle consists of protein that encircles various lipids, enabling, as a water-soluble particle, these lipids to travel in the aqueous blood environment as part of the fat transport system within the body. Their size is, in general, 25 to 35 nm in diameter, and they contain primarily a range of triglycerides and cholesterol ...
The lipid-anchored protein can be located on either side of the cell membrane. Thus, the lipid serves to anchor the protein to the cell membrane. [1] [2] They are a type of proteolipids. The lipid groups play a role in protein interaction and can contribute to the function of the protein to which it is attached. [2]
HDL carries many lipid and protein species, several of which have very low concentrations but are biologically very active. For example, HDL and its protein and lipid constituents help to inhibit oxidation, inflammation, activation of the endothelium, coagulation, and platelet aggregation. All these properties may contribute to the ability of ...
The surface of a curved lipid bilayer. Lipidology is the scientific study of lipids. Lipids are a group of biological macromolecules that have a multitude of functions in the body. [1] [2] [3] Clinical studies on lipid metabolism in the body have led to developments in therapeutic lipidology for disorders such as cardiovascular disease. [4]
The lipid bilayer is very thin compared to its lateral dimensions. If a typical mammalian cell (diameter ~10 micrometers) were magnified to the size of a watermelon (~1 ft/30 cm), the lipid bilayer making up the plasma membrane would be about as thick as a piece of office paper. Despite being only a few nanometers thick, the bilayer is composed ...
Lipid raft organization, region (1) is a standard lipid bilayer, while region (2) is a lipid raft. The plasma membranes of cells contain combinations of glycosphingolipids, cholesterol and protein receptors organized in glycolipoprotein lipid microdomains termed lipid rafts. [1] [2] [3] Their existence in cellular membranes remains controversial.