Search results
Results from the WOW.Com Content Network
The term stems from cumene (isopropyl benzene), the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), [1] and independently by Heinrich Hock in 1944. [2] [3] This process converts two relatively cheap starting materials, benzene and propylene, into two more valuable ones, phenol and acetone.
[6] [7] Due to the two step nature, the Raschig–Hooker process can be used to produce either chlorobenzene or phenol. Reaction scheme of the Raschig-Hooker process. The Raschig–Hooker process's ability to make phenol makes it comparable to other methods, such as the Dow and Bayer process, which also converts benzene into phenol. In fact ...
Benzene can be easily converted to chlorobenzene by nucleophilic aromatic substitution via a benzyne intermediate. [1] It is treated with aqueous sodium hydroxide at 350 °C and 300 bar or molten sodium hydroxide at 350 °C to convert it to sodium phenoxide, which yields phenol upon acidification. [2]
Phenol is reduced to benzene when it is distilled with zinc dust or when its vapour is passed over granules of zinc at 400 °C: [22] C 6 H 5 OH + Zn → C 6 H 6 + ZnO. When phenol is treated with diazomethane in the presence of boron trifluoride (BF 3), anisole is obtained as the main product and nitrogen gas as a byproduct. C 6 H 5 OH + CH 2 N ...
More so than thiophenol, benzeneselenol is easily oxidized by air. The facility of this reaction reflects the weakness of the Se-H bond, bond dissociation energy of which is estimated to be between 67 and 74 kcal/mol. [1] In contrast, the S-H BDE for thiophenol is near 80 kcal/mol. [3] The product is diphenyl diselenide as shown in this idealized equation:
The simplest is phenol, C 6 H 5 OH. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule. Phenol – the simplest of the phenols Chemical structure of salicylic acid, the active metabolite of aspirin. Phenols are both synthesized industrially and produced by plants and ...
The phenol can be liberated from the chromium complex by a mild oxidation, such as ceric ammonium nitrate or air oxidation. Since this reaction can quickly generate complex phenolic compounds, the Wulff–Dötz reaction has been used most often in the synthesis of natural products , especially Vitamins E and K .
The Duff reaction or hexamine aromatic formylation is a formylation reaction used in organic chemistry for the synthesis of benzaldehydes with hexamine as the formyl carbon source. The method is generally inefficient. [1] The reaction is named after James Cooper Duff. [2]